

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Geología

(Programa Período 2012 - 2014)

Área: Geología

I.- OFERTA ACADÉMICA

Materia	Carrera	Plan de estudios	Año	Periodo
Petrografía y	Ingeniería en	07/08	2012 - 2014	2º Cuatrimestre
geología de	minas			
yacimientos				
minerales				

II.- EQUIPO DOCENTE

Nombre	Función	Cargo	Dedicación	
Urbina, Nilda Esther	Responsable	Prof. Adj.	Exclusiva	
Martinez, Amancay Nancy	Co-responsable	Prof. Adj.	Exclusiva	
Gallard Esquivel, Cecilia	Colaborador	JTP	Exclusiva	

III.- CARACTERÍSTICAS DEL CURSO

Características del Curso

Crédito Horario Semanal				Tipificación	Duración				
Teórico/Práctico Teóri	m / :	eóricas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total	С	Desde	Hasta	Cantidad	Cantidad en Horas
	Teoricas				Periodo				
6 Hs				6 Hs	Cuatrimestre	14/03	22/06	15	90

^{*}Referencias de tipificación de materias

- A Teoría con prácticas de aula y campo
- B Teoría con prácticas de aula y laboratorio
- C Teoría con prácticas de aula
- D Teoría (solo)
- E Teoría con prácticas de aula, laboratorio y campo

IV.- FUNDAMENTACIÓN

El curso Petrografía y Geología de Yacimientos Minerales se encuentra en 4º año de la carrera de Ingeniería en Minería. Esta asignatura brinda un conocimiento general sobre los distintos tipos

de rocas y yacimientos minerales así como sobre los procesos y ambientes característicos de formación. Es requisito indispensable para cubrir este objetivo, tener cursada la asignatura Mineralogía y poseer conocimientos previos de Geología Estructural y Geoguímica.

V.- OBJETIVOS

OBJETIVOS GENERALES: Conocer las rocas ígneas, metamórficas y sedimentarias y estudiar los distintos tipos de concentraciones minerales que se producen en la naturaleza.

OBJETIVOS PARTICULARES:

- Reconocer y describir los principales tipos de rocas ígneas, metamórficas y sedimentarias.
- Conocer las los ambientes y condiciones bajo las que se generan las rocas ígneas, metamórficas y sedimentarias.
- Adquirir conocimiento sobre los mecanismos de formación de los yacimientos minerales.
- Reconocer los tipos más importantes de yacimientos minerales y los ambientes mayores de formación.

VI.- CONTENIDOS

MÓDULO I: ROCAS IGNEAS, METAMORFICAS Y SEDIMENTARIAS

BOLILLA I

Petrología y petrografía, definición y objetivos. Rocas ígneas, metamórficas y sedimentarias. Ciclo de las rocas. Características y distribución en distintos ambientes geotectónicos.

BOLILLA II

Composición de las rocas ígneas y sus principales minerales. Definición de texturas y estructuras de rocas ígneas. Magma, generación de magmas, diversificación y ascenso. Cuerpos intrusivos y extrusivos.

BOLILLA III

Clasificación de las rocas ígneas: modal y química. Series de rocas. Rocas calcoalcalinas, toleiíticas, alcalinas en los diferentes ambientes tectónicos.

BOLILLA IV

Metamorfismo. Definición y características. Agentes del metamorfismo. Deformación y recristalización. Fábrica de rocas metamórficas. Tipos de metamorfismo. Metamorfismo local y regional. Tipos de rocas metamórficas.

BOLILLA V

Rocas sedimentarias. Mecanismos formadores de rocas sedimentarias. Erosión, transporte y depositación. Diagénesis. Tipos de rocas sedimentarias. Detríticas. Carbonáticas. Alumínico-ferriginosas. Evaporíticas. Fosfatadas. Organógenas. Principales características y ambientes.

MÓDULO II DEPÓSITOS MINERALES

BOLILLA VI1

Conceptos Generales. Concepto de Yacimiento Mineral (Depósito Mineral). Concepto de mena y ganga. Cuerpo mineralizado. Ore y protore. Concepto de Ley del yacimiento, de Ley de la mena y de Ley mínima o ley crítica. Fluidos portadores de mineralización. Canales utilizados para su migración.

BOLILLA VIII

Control estructural en el emplazamiento de las mineralizaciones. Principales morfologías de depósitos. Ambientes geotectónicos de formación.

BOLILLA IX

Tipos más importantes de depósitos minerales. a) Ambiente de subducción: Depósitos porfíricos de cobre-oro. Depósitos en skarns. Depósitos epitermales de metales preciosos. Depósitos de molibdeno porfírico. Depósitos de Sn. Depósitos de sulfuros masivos de tipo Kuroko. b) Ambiente de placas divergentes: Depósitos de cromo. Depósitos de sulfuros de Ni, Cu, Pt, Co. Depósitos de sulfuros masivos de tipo Chipre. c) Ambiente de colisión: Depósitos de Sn. Depósitos de U-V. Depósitos de Pb-Zn-Ba-F en rocas carbonáticas. d) Ambiente de intraplaca: Depósitos de Sn. Depósitos de Fe-Ti. Depósitos de diamantes. Depósitos carbonatíticos, e). Depósitos sedimentarios. f) Depósitos Argentinos.

VII.- PLAN DE TRABAJOS PRÁCTICOS

Plan de Trabajos Prácticos

- 1- Descripción, identificación y clasificación macroscópica de las principales rocas ígneas.
- 2- Descripción, identificación y clasificación macroscópica de las principales rocas metamórficas.
- 3- Descripción, identificación y clasificación macroscópica de las principales rocas sedimentarias.
- 4.- Reconocimiento de muestras de mano de los tipos más importantes de yacimientos minerales
- 5.- Reconocimiento de muestras de mano de los tipos más importantes de yacimientos minerales II.

VIII.- RÉGIMEN DE APROBACIÓN

- La materia tendrá régimen promocional para quienes tengan aprobada la asignatura Mineralogía.
- 2 Quienes tengan Mineralogía cursada pero no aprobada, podrán cursar la materia, regularizarla y rendir Examen Final.
- 3 La asistencia a las clases teóricas y prácticas es obligatoria, no admitiéndose más del 20% de inasistencias por causas justificadas.
- 4 Los trabajos prácticos serán aprobados con cuestionarios y/o presentación de informe.
- 5 Se realizarán dos exámenes parciales de la parte teórica que para promocionar deberán ser aprobados con la calificación de 7. El alumno tendrá derecho a una recuperación por parcial. Al finalizar la materia deberá rendir un examen parcial general integrador que será aprobado con la calificación de 7.
- 6 En caso de no encontrarse en condiciones de promocionar por no tener Mineralogía aprobada o de no alcanzar la calificación exigida para promocionar la materia en caso de tener Mineralogía, el alumno podrá obtener la regularidad de la misma siempre y cuando supere la calificación de 6 en los parciales. En tal caso, el Examen Final será aprobado con la calificación de 4 sobre 10.
- 7 Los exámenes libres consistirán en una evaluación escrita sobre los temas que forman parte del programa de trabajos prácticos, dicha evaluación se aprobará con el 60% de respuestas correctas. El alumno que apruebe la evaluación escrita deberá rendir un examen oral de las mismas características que los alumnos regulares.

IX.- BIBLIOGRAFÍA BÁSICA

Aubouin, Brousse y Lehman. 1980. Petrología. Ed. Omega.

Barnes H., 1982. Geochemistry of hidrothermal ore deposits. Wiley, new york.

Bayly. Petrología. Ed. Paraninfo.

Best, M. 1982. Igneous and metamorphic petrology. W.H. Freemen & Co.

Evans, A., 1993. Ore geology and industrial minerals. An introduction. Blackwell scientific publications. 390p.

Foster, R. P., ed., 1993. Gold metallogeny and exploration. Chapman & hall. 432p.

Guilbert, J., and Park, Ch. Jr., 1986. The geology of ore depo¬sits. W.H. Freeman and Company. N. Y. 985p.

Hall, P. 1991. Igneous petrology. Longman Scientific & Technical.

Kilmurray, J. y Teruggi, M. 1982. Fabrica de metamorfitas. Li¬brart.

Kornprobst, J. 1994. Les roches métamorphiques et leur significa¬tion géodynamique. Précis de pétrologie. Masson. Paris.

Llambías, E. J. 2001. Geología de los cuerpos ígneos. Serie correlación geológica 15. Instituto de correlación Geológica INSUGEO. U.N. de Tucumán.

Marti J. y Araña V. 1993. La volcanología actual. CSIC. Madrid.

Mazzoni, M. 1986. Procesos y depósitos piroclásticos. Serie B N* 14. A.G.A.

Mc Birney, A. R. 1984. Igneous Petrology. Freeman, Cooper & Company.

Mc Kinstry, H. 1977. Geología de minas. Omega.

Philpotts, A. 1989. Petrography of igneous and metamorphic rocks. Prentice Hall.

Sawkins, F. J., 1990. Metal deposits in relation to plate tec¬tonics. Second edition. Springer Verlag. 461p.

Shelley, D. 1995. Igneous and metamorphic rocks under the microscope. Classification, textures, microstructures and mineral preferred orientations. Chapman & Hall.

Teruggi, M. 1980. La clasificación de las rocas ígneas. Librart.

Teruggi, Mazzoni, Spalleti y Adreis. 1978. Rocas piroclásticas: interpretación y sistemática. Serie B N 14 A.G.A.

Thorpe, R. and Brown, G. 1985. The field descripción of igneous rocks. J. Wiley & Sons.

Winkler. 1978. Petrogénesis de rocas metamorficas. Blume.

Yardley. 1989. An introduction to metamorphic petrology. Longman Earth Sc. Series.

X b - BIBLIOGRAFÍA COMPLEMENTARIA

Wa a

Nilda Esther Urbina